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The notion of a paracrystal is particularly well adapted to the calculation of the

scattering interference function of distorted crystallographic lattices in which

the long-range order does not exist. However, classical paracrystal modelling

cannot be used directly for hexagonal lattices because it does not respect the

hexagonal symmetry. Here an analytical determination of the distribution and

interference functions for two-dimensional hexagonal paracrystals is presented.

1. Introduction

The notion of the paracrystal was developed about 50 years

ago by Hoseman (1950) for modelling X-ray scattering

patterns produced by distorted crystallographic lattices in

which the long-range order is non-existent. Contrary to clas-

sical crystals, for which the lattice geometry is ®xed, para-

crystals allow ¯uctuations of the lengths and orientations of

lattice vectors, and thus make it possible to account for slight

amplitude distortions as well as larger ones in the lattice by a

change in parameters. This description is elegant since the

distribution function of the lattice nodes is analytical, as is its

Fourier transform (interference function) in the widely

acceptable approximation of Gaussian ®rst-node distribution

functions. Remembering that the scattered intensity is equal to

the product of the interference function and the square

modulus of the unit-cell form factor, the paracrystal model

appears very well adapted to the analysis of X-ray scattering

by disordered media.

The mathematical bases of the modelling can be reviewed in

Hoseman (1950), Hoseman & Bagchi (1962) and Vainshtein

(1966), whose notations are used here. In short, in the

approximation for ideal two-dimensional paracrystals, the

position of the (m, n) node in lattice (a, b) is not equal to

r � ma� nb as in a classical crystal but depends on the actual

position of the neighbouring nodes, the parallelogram shape of

each unit cell being retained. This condition can be translated

mathematically in a simple way. By calling ha�r� and hb�r� the

distribution functions of the ®rst lattice nodes along axes a and

b, which are characterized by their parameter sets (hai, �a
a , �a

b)

and (hbi, �b
a , �b

b), respectively average values and standard

deviations along a and b, the distribution function around

node (m, n) is given by the convolution product of ha self-

convoluted m times and hb self-convoluted n times. The

complete distribution function is therefore written as:

Z�r� � �0 �
P
m

P
n

�ha�r���m � �hb�r���n;

where � means convolution product.

The Fourier transform of z(r) gives the interference func-

tion Z(S):

Z�S� � f1� 2<�Ha=�1ÿHa��gf1� 2<�Hb=�1ÿHb��g;

where Ha and Hb are the Fourier transforms of ha and hb, <
represents the real part of complex quantities.

Assuming Gaussian distribution functions, i.e.

ha�rÿ haia� � G�u; �a
a�G�v; �a

b�

with

r � ua� vb

and

G�x; �� � �1=��2��1=2� exp�ÿx2=2�2�;

we have

Ha�S� � exp�ÿ2�2h2�a2
a � exp�ÿ2�2k2�a2

b �;

where h and k are the reduced components of the scattering

vector S. A symmetric expression is found for Hb.

The interference function Z(S) displays a series of maxima

centred around the reciprocal nodes; their widths increase

when the indices (m, n) increase and they diminish rapidly as

the standard deviations become larger. In Fig. 1(a) is shown an

example of a two-dimensional interference function, repre-

sented using a grey scale, which has been calculated for a

hexagonal lattice, assuming identical isotropic Gaussian

distribution functions along a and b. As expected, the widths

of the re¯ections increase starting from the centre, but the

sixfold symmetry is not respected. This anomaly is due to the

fact that, in the general paracrystal formulation given above,

the distribution function for node (1, 1) is calculated as the

convolution of ha�r� and hb�r�, whilst it should be exactly the

same as ha�r� or hb�r� for hexagonal symmetry reasons. The

general calculation of the distribution and interference func-

tions for paracrystals, as formulated initially, does not respect

the equivalence of a, b and a� b axes in the hexagonal lattice.



Hoseman & Bagchi (1962) have extended their model to

non-ideal paracrystals. They have brie¯y described the case of

hexagonal lattices as an application of this `real' paracrystal in

which the symmetry is restored by taking into account an

additional diagonal term and then by calculating an average

value of the interference function after successive rotations of

60�. This calculation has several shortcomings: ®rst, it does not

provide an expression for the distribution function in real

space. Second, it does not respect the hexagonal symmetry

throughout the whole calculation but reintroduces it in the

end by averaging over the hexagonal lattice. Third, the authors

provide a formula for the interference function that involves

®rst-node functions H(S) which do not possess the hexagonal

symmetry, making it very problematic to use.

These dif®culties represent a problem in the case of most

biological tissues which are characterized by a hexagonal-type

lateral packing of elementary units, as for instance in muscles,

keratin ®bres and collagen tissues. Extending and comple-

menting the general theory of paracrystals, we present here an

analytical determination of the distribution and interference

functions for two-dimensional hexagonal paracrystals that

fully respects the hexagonal symmetry, ®rst in the general case,

then in the Gaussian approximation.

2. Theory for the ideal two-dimensional hexagonal
paracrystal

We de®ne the hexagonal lattice by the usual two vectors a and

b, but we will also use a third vector c in order to preserve the

symmetry between the three equivalent nodes (1, 0), (0, 1) and

(1, 1) of the lattice (Fig. 2). To make the calculations

straightforward, we rename the vectors as:

w1 � a; w2 � c; w3 � b; w4 � ÿa; w5 � ÿc;

w6 � ÿb � w0
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Figure 1
Split two-dimensional modelling in linear grey-scale representation of the interference function for two-dimensional hexagonal paracrystal lattices. All
the standard deviations are chosen equal to 14% of the parameter length. (a) Modelling using the classical formulation. The sixfold symmetry is lost in
the interference function. (b) Modelling using the special formulation for the hexagonal paracrystals developed in this paper. The sixfold symmetry is
now ful®lled.
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and we separate the plane in six equivalent sections (Fig. 2),

sector i being the area limited by wiÿ1 and wi. The distribution

function then follows:

z�r� �P6

i�1

zi�r� �
P6

i�1

zwi
�r� � �0; �1�

where zi, zwi
and �0 represent respectively the distribution

functions of sector i (axes excluded), axis wi (centre excluded)

and centre alone.

The zi functions are de®ned by

zi�r� �
P�1
m�1

�hwiÿ1
�r���m �P�1

n�1

�hwi
�r���n; 1 � i � 6; �2�

where � means convolution product.

The hwi
�r� ®rst-node functions characterize the distributions

of the positions around the six ®rst-order nodes de®ned by the

wi vectors. Note that hwi
�r� � h0

wi
�rÿ wi�, where h0

wi
is calcu-

lated at the origin of the lattice. It follows that

zwi
�r� � P�1

m�1

�hwi
�r���m: �3�

For the interference function Z(S), it follows by application

of the Fourier-transform properties that

Z�S� �P6

i�1

Zi�S� �
P6

i�1

Zwi
�S� � 1 �4�

with

Zi�S� �
P�1
m�1

�Hwiÿ1
�m�S�P�1

n�1

�Hwi
�n�S�

� fHwiÿ1
�S�=�1ÿHwiÿ1

�S��gfHwi
�S�=�1ÿHwi

�S��g �5�
and

Zwi
�S� � P�1

m�1

�Hwi
�S��m � fHwi

�S�=�1ÿHwi
�S��g: �6�

Since it is possible to write

Hwi
�S� � H0

wi
�S� exp�ÿ2i�S � wi�;

the calculation of the total interference function is then

conditioned by the modelling of six ®rst-node functions H0
wi

in

the reciprocal space.

Taking into account the centre of inversion of all lattices,

the above formulas are greatly simpli®ed; thus, for 1 � i � 3,

hwi�3
�r� � hwi

�ÿr� and Hwi�3
�S� � Hwi

�S�;

where the bar means complex conjugation.

Finally, the interference function is calculated by

Z�S� � 2<
X3

i�1

Hwiÿ1
�S�

1ÿHwiÿ1
�S�

Hwi
�S�

1ÿHwi
�S�

" #

� 2<
X3

i�1

Hwi
�S�

1ÿHwi
�S�

" #
� 1: �7�

Therefore, the full de®nition of Z(S) only requires three

functions Ha, Hb and Hc. Equation (7) is equivalent to (79) in

Hoseman & Bagchi (1962), but obtained in a straightforward

manner, compatible with the hexagonal symmetry as long as

the hwi
(or Hwi

) functions are also compatible with this sym-

metry.

In the simplest but most useful case for the modelling of

biological samples, all the ®rst-order nodes are generally

considered equivalent, which means that all the h0
wi

(or H0
wi

)

functions are equal to a unique h0 (or H0); in addition, h0 (or

H0) is isotropic in order to ful®l the average circular symmetry

of the cylinder-shaped objects. It is important to avoid any

confusion between the geometry of the average unit cell,

which is used to build the paracrystal and the ®nal average

geometry of the unit cells in the paracrystal. In our case, the

geometry of the initial unit cell is hexagonal, but if the

distribution functions were not identical, or were character-

ized by anisotropic standard deviations, then we would not

expect a paracrystal with an average hexagonal unit cell. The

most common case corresponds to the hexagonal isotropic

case, but anisotropic distortions can be considered, for

example to account for a one-direction induced stress.

3. Distribution and interference functions in the
Gaussian approximation

In the Gaussian approximation, each ®rst-node function is

taken as the normalized product of three Gaussian distribu-

tions corresponding to the three directions a, b and c. Calling

G�(x) the Gaussian function with standard deviation � and

®xing by convention a and c as the coordinate vectors, all the

®rst-node functions can be written as

hwi
�r� � DG�1

wi
�u�G�2

wi
�v�G�3

wi
�u� v� �8�

with r � ua� vc and where D is a normalization factor.

Figure 2
Notation used for axes and sectors in the modelling of the distribution for
a two-dimensional hexagonal paracrystalline lattice.



In order to easily calculate and handle the Fourier trans-

form of the ®rst-node functions, we have chosen to impose

jja�jj � jjc�jj � 1. Writing S � ka� � hc�, we have:

H0
wi
�S� � H0

wi
�h; k�

� R�1
ÿ1

R�1
ÿ1

h0
wi
�u; v� exp�ÿ2i��hu� kv���2=31=2� du dv

�9�
H0

wi
�h; k� � �2D=�2��3=2�1�2�331=2�

� R�1
ÿ1

exp�ÿu2=2�2
1��J� exp�ÿ2i�hu� du;

�10�
where the J integral is given by

J � R�1
ÿ1

exp�ÿv2=2�2
2 ÿ �u� v�2=2�2

3 � exp�ÿ2i�kv� dv: �11�

To perform the calculation of this integral, we rewrite it as the

Fourier transform (FT) of a Gaussian function

J � �2��1=2�2;3 exp�ÿu2=2��2
2 � �2

3��
� FTfG�2;3 �v� u��2;3=�

2
3��g�k�; �12�

where 1=�2
2;3 � 1=�2

2 � 1=�2
3. According to the rules for the

Fourier transform of a Gaussian function:

J � �2��1=2�2;3 exp�ÿu2=2��2
2 � �2

3�� exp�2i�ku��2
2;3=�

2
3��

� exp�ÿ2�2�2
2;3k2�: �13�

Then the ®rst-node function as a whole can also be rewritten

in the same way:

H0
wi
�h; k� � 2D�2;3�1;2;3

31=2�1�2�3�2��1=2
exp�ÿ2�2�2

2;3k2�

� FT�G�1;2;3 �u���hÿ k��2
2;3=�

2
3��; �14�

where 1=�2
1;2;3 � 1=�2

1 � 1=��2
2 � �2

3�, and which gives, after

simpli®cation,

H0
wi
�h; k� � 2D

31=2�P3
i�1 �

2
1�1=2�2��1=2

� exp ÿ2�2 �
2
1�

2
3h2 � �2

2�
2
3 k2 � �2

1�
2
2�hÿ k�2

�2
1 � �2

2 � �2
3

� �
:

�15�
The D factor is necessary for the ®rst-node function in direct

space to have a unit integral over the whole plane, which

means that its Fourier transform is unity at the origin of the

reciprocal space. Then, the value of D follows:

D � �2��1=2�31=2=2���2
1 � �2

2 � �2
3�1=2: �16�

3.1. A particular case: sixfold symmetry, isotropic first-node
functions

We consider here the simpli®cation of the previous calcu-

lations in the case of an isotropic lattice, where all the direct-

space (or reciprocal-space) ®rst-node functions and all the �i

values are equal to h0 (or H0) and �.

The direct-space ®rst-node function is then

h0�r� � DG��u�G��v�G��u� v�
� �D=�2��3=2�3� expfÿ�u2 � v2 � �u� v�2�=2�2g

�17�
and, with the value of D [from (16)] and the relation

r2 � �ua� vc�2 � u2 � v2 � uv � 1
2 �u2 � v2 � �u� v�2�;

�18�
the isotropic lattice function becomes

h0�r� � �3=4��2� exp�ÿr2=�2�: �19�
The reciprocal-space ®rst-node function can be derived as

H0�h; k� � expfÿ2�2�2�h2 � k2 � �hÿ k�2�=3g
� exp�ÿ4�2�2S2=3�: �20�

We remark that both functions are cylindrically symmetric

around the origin of their lattices. The whole interference

function is calculated using formula (7). The lattice functions

in that case are then only described by one parameter �. In

Fig. 1(b) is represented the interference function calculated

with our modelling in the isotropic hexagonal case with the

same standard deviations as those chosen for Fig. 1(a). The

effect of our modelling is quite clear since, contrary to Fig.

1(a), the hexagonal symmetry is respected.

4. Discussion

The direct determination of the distribution and interference

functions described above for hexagonal paracrystals, in both

the isotropic and general cases, allows the use of this model for

a wide range of applications related to distorted two-dimen-

sional hexagonal crystals including biological samples and

liquid crystals.

Some authors have pointed out that Hoseman's theory

imposes restraints on the allowed deformations of the crystal

unit cell, which remains a parallelogram in the ideal case

exposed above (BraÈmer, 1975). It must be stressed that the

paracrystal is a model, which means that it is conceived as an

ef®cient tool to account for an actual distorted crystal through

its distribution and interference functions (which are indeed

average functions over a large number of lattice cells). In that

respect, the limitation of the unit-cell shape must be seen as a

selection of a certain class of allowed deformations which

present the advantage of making an analytical calculation

possible. Other deformations may have consequences on the

actual positions of lattice nodes in a particular crystal, but the

average behaviour in terms of distribution and interference

functions remains essentially the same. Other models exist to

account for systematic distortions in crystals, such as the

hexatic lattice model, but they are more dif®cult to handle,

especially because they need more input parameters than the

paracrystal.
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The behaviour of the paracrystal interference function for

small values of ||S|| may also appear as a potential problem of

the model (Welberry, 1985). Even though it does go to in®nity

when ||S|| goes to zero, as is expected for a perfect crystal,

some authors have claimed that, for a homogeneous disorder,

the small-angle signal should have a ®nite value related to the

density ¯uctuations, as for liquids and gases (Perret & Ruland,

1971; BraÈmer & Ruland, 1976). This criticism was recently

ruled out in a more sophisticated one-dimensional paracrystal

model that also takes into account the limited size of the

diffraction units (Mu, 1998). However, great care must still be

taken to interpret the paracrystal structure. It should not be

interpreted as anything more than a distorted crystal, in which

the long-range order has faded but long-range correlations

still remain between any two nodes through a statistical law. In

that respect, we think that the paracrystal model is a powerful

tool as long as it is used only for samples to which it can be

applied and in that case it provides quantitative results. Strictly

speaking, such samples can be de®ned as distorted crystals in

which the crystalline order has not disappeared and for which

the behaviour of the interference function at small angles is

then coherent. In particular, we think that the paracrystal

model can indeed only partially account for gases, liquids and

related structures.

Keeping in mind that the paracrystal is a modelling method

that must only be applied to appropriate samples, it has

proved very useful so far to quantitatively account for

experimental X-ray scattering data. For example, it has been

shown that cylindrically averaged interference functions from

a two-dimension hexagonal paracrystal with isotropic ®rst-

node functions (Briki et al., 1998) are very close to those

calculated from the actual positions of keratin micro®brils on

an electron micrograph (Fraser et al., 1964), which strongly

supports the general study of the hexagonal paracrystal

presented here.
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